Development of Joining Method for Thermoplastic Composites

IV SAMPE Brazil conference 2016

08th November 2016
Summary

Development of Thermoplastic Composites
Joining Method for aircraft structures

Assembly method for composite parts
Mechanical fastening (state-of-the-art)

Thermoplastic composite: Can be melted
Capability of welding technique

Developed three joining method for aircraft structures
1. Ultrasonic Welding
2. Microwave Welding
3. Adhesive Bonding (Not welding technich)

Material: Continuous carbon fiber (CF) / Polyether ether ketone (PEEK)

http://www.compositesworld.com
Contents

1. Overview

2. Purpose

3. Experiments and Results
 3.1 Method of evaluation
 3.2 Ultrasonic welding
 3.3 Microwave welding
 3.4 Adhesive bonding

4. Conclusion
1. Overview

Continuous fiber reinforced thermoplastic composite (FRTP)
Possibility as material for future aircraft and automotive components

Feature compared to conventional fiber reinforced thermoset composite (FRP)
- Low production cycle time (No chemical reaction)
- Infinite shelf life (Not required refrigeration equipment for storage)
- Insensitive to moisture (Less degraded mechanical properties under Hot/Wet conditions)
- Superior impact and damage tolerance
- Can be welded
- Can be reformed
- Repairability

Fig. A380 thermoplastic J-nose (Fokker)
Fig. CFRTP parts

http://www.compositesworld.com
2. Purpose

Joining method of conventional FRP components
Assembled by mechanical fastening
- Stress concentration induced drilling holes
- Heavy weight (Fastener, Sealing and FRP thickness)
- Expensive assembly cost

Joining method of FRTP components
Required non-fastening joining method utilizing FRTP features
- Can be melted after formed

This study
Developed ultrasonic welding, microwave welding and adhesive bonding
as non-fastening light and low cost joining method for future aircraft structures

Fig. Mechanical fastening component

http://www.compositesworld.com
3.1 Method of evaluation

Base material
- T800S continuous carbon fiber (CF) / polyether ether ketone (PEEK)
- Supplier: Toray Industries, Inc.
- Fiber volume content: 55%
- Form: Unidirectional
- Dimension: 330 mm x 300 mm
- Laminated constitution: Quasi-isotropic \([(+45^\circ / 0^\circ / -45^\circ / 90^\circ)]_{3S}\)
- Processing temperature: 390°C
- Consolidation pressure: 8 MPa
- Consolidation time: 15 min
- Cooling rate: 8°C/min
- Total fabrication time: 80 min
- Nominal thickness: 3.7 mm

Fig. Lay-up
Fig. Hot platen press
Fig. Thermal profile
3.1 Method of evaluation

Mechanical properties
- Compressive strength
- Tensile strength
- G_{IC} energy

Almost the same or higher compared to conventional thermoset composites

- Double notch compression shear test

![Schematic of double notch compression shear test](image1)

Strength of compression shear strength: **66.7 MPa**

![Picture of specimen after test](image2)
3.1 Method of evaluation

Single lap shear test
- Test method: Single lap shear (ASTM D 1002) for technical feasibility
- Sample size: L:100 mm W:25.4 mm
- Overlap area: L:12.7 mm W:25.4 mm
- Crosshead speed: 1.3 mm/min
- Test condition: Standard condition
- Number of specimen: 3 per set each joining conditions
- Joining method: Ultrasonic welding
 Microwave welding
 Adhesive bonding

Fig. Schematic of single lap shear test

Fig. Picture of specimen during test
3.2 Ultrasonic welding

Method of ultrasonic welding

![Diagram of ultrasonic welding process]

- High frequency mechanical vibration
- Energy director (Thermoplastic)
- Welding

Energy director
- Starting point of melting

Conventional
- Projection shaped energy directors (Difficult to attach on surface)

Replace
- Diameter: 0.5 mm

![Image of mesh shaped energy directors]

Fig. Principle of the ultrasonic welding method

Fig. Mesh shaped energy directors
3.2 Ultrasonic welding

Welding condition
- Ultrasonic welder: Seidensha Electronics JG3600S
- Frequency: 20 kHz
- Peak power: 650 W
- Amplitude: 80%
- Welding time: 9 s
- Welding pressure: 0.4 MPa
- Retaining time: 5 s
- Welding energy: 3500~5500 J
- Clamping tools: Prevent samples from horizontal shifting
 Allow vertical movement of the upper substrate

Fig. Set up of the ultrasonic welding method
3.2 Ultrasonic welding

Result of single lap shear test
- 3500 ~ 4500 J: Interfacial delamination
 Low welding energy
- 5000 J: Substrate fracture
 Welded in high quality
- 5500 J: Not jointed
 Damaged substrate
 Too high welding energy

Fig. Result of single lap shear test

Fig. Fracture surface after single lap shear test
(Welding energy: 5000 J)
3.3 Microwave welding

Method of microwave welding
Microwave heating
- High heating efficiency joining
- Rapidly heating by self-heat generation
- Capability to irradiate entire component and consequence joint large area
- High cycle

CFRTP
- Low microwave absorption property
- Required high microwave absorption property material
 Inserted metal nano-coil at joint surface

Fig. Principle of the microwave welding method

Self-heating generation only joint surface
3.3 Microwave welding

Platinum nano-coil

Electrospinning process
- Polyvinyl alcohol (PVA) nano-fibers made by electrospinning
- Platinum coated on PVA by sputtering
- PVA nano-fibers thermally decomposed by oven heating
- Very thin coating contracted in the shape of coil by heating

Cross section: Hollow or horseshoe shape

Fig. Picture of Pt nano-coil

Fig. Schematic of cross section of Pt nano-coil
3.3 Microwave welding

Welding condition
- Microwave welder: Fuji Electronic Industrial Co., Ltd microwave welder
- Frequency: 2.45 GHz
- Power: 1.5 kW (Multi mode)
- Welding time: 180 s
- Welding pressure: 0.087 MPa
- Nano-coil material: Platinum
- Nano-coil amount: 14 μg/cm²
- Nano-coil setting: Inserted in joint surfaces with Victrex PEEK film
- Clamping tools: PEEK resin (Low microwave absorption and reflection properties)

Fig. Set up of the microwave welding method
3.3 Microwave welding

Result of single lap shear test
- Applied Pt nano-coil: **43 MPa**
 Welded joint surface in high quality
- Without Pt nano-coil: **Not jointed**
 Not welded joint surface

![Substrate fracture](image)

Fig. Fracture surface after single lap shear test
3.3 Microwave welding

Temperature measurement test

Fig. Temperature measurement by radiation thermometer

Pt nano-coil: High microwave absorption property in spite of very low amount
CF/PEEK: Not remarkable

Compared to Pt nano-fiber (Linear shaped, same diameter with Pt nano-coil)
- Temperature raised gradually with wavelength 2.45 GHz
- Cause of heating difference by microwave: Based on the shape difference?

We continue the research in order to clarify a cause of this phenomenon
3.4 Adhesive bonding

Adhesive bonding
- Proven and established joint method for FRP
- Low adhesive strength applied epoxy based adhesive to FRTP
 Require to change FRTP’s surface condition suitable for adhesive bonding

Atmospheric pressure plasma treatment
- Pre-treatment method for bonding
- Cleaning effect
- Increase functional group on surface
- Easy to automation
- Uniform quality
- Low surface damage
- High speed

Ref. Plasmatreat
3.4 Adhesive bonding

Select irradiance condition of plasma treatment (Pre-examination)
- Machin: Nihon Plasmatreat Inc.
 FG5001 generator
 RD1004 plasma nozzle
- Evaluation item: Contact angle of water
 Adhesion strength
- Material: PEEK resin

Contact angle
- To obtain high bonding strength
 Required high solid surface energy

Young’s equation
$$\gamma_s = \gamma_{sl} + \gamma_l \cos \theta$$

- θ: Contact angle
- γ_s: Solid surface free energy
- γ_{sl}: Solid/liquid interfacial free energy
- γ_l: Liquid surface free energy

Lowest contact angle θ: Highest solid surface energy
3.4 Adhesive bonding

Select irradiance condition of plasma treatment (Pre-examination)

Criteria of selection
- Contact angle of water: Lowest
- Adhesion strength: Highest

Selected condition for next test
- Treatment speed: 0.6 m/min
- Distance between work and specimen: 5 mm
- Atmosphere: Air

Fig. Pre-examination result
3.4 Adhesive bonding

Chemical influence of atmospheric pressure plasma treatment
- Irradiance condition: Selected in pre-examination
- Evaluation method: X ray photoelectron spectroscopic (XPS) of CF/PEEK
- XPS equipment: ULVAC-PHI incorporated company PHI 5000 Versa Probe

Table Result of XPS analysis

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Depth</th>
<th>Element content (Atomic %)</th>
<th>Oxygen ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td>Plasma</td>
<td>Outermost surface</td>
<td>72.24</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>5nm</td>
<td>93.95</td>
<td>1.21</td>
</tr>
<tr>
<td>Non-treated</td>
<td>Outermost surface</td>
<td>89.25</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>5nm</td>
<td>96.34</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Result
- Decrease: Binding energy correspond to C-H and C-C bonds
- Generate: Binding energy correspond to ether (C-O), carboxyl (O-C=O) functional groups Chemical interactive with epoxy based adhesive
- Effect only low depth (Less 10 nm)
 No chemical changes of carbon fiber

Suitable pre-treatment method for chemical surface modification
3.4 Adhesive bonding

Result of single lap shear test
Atmospheric pressure plasma treated on joint surface before bonding
Adhesive: Two components epoxy based adhesive
(Nagase ChemteX corporation DENATITE 2204)

Result
- With atmospheric pressure plasma treatment: 25 MPa
- Without atmospheric pressure plasma treatment: 15 MPa

Fig. Fracture surface after single lap shear
4. Conclusion

<table>
<thead>
<tr>
<th>Joining Method</th>
<th>Schematic View</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasonic Welding</td>
<td></td>
<td>- High rate joining</td>
<td>- Applicable only spot joining</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Not rise in temperature more than the resin</td>
<td>- Require of exclusive-use facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>melting point</td>
<td>- Require of energy direct on joint surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwave Welding</td>
<td></td>
<td>- High rate joining</td>
<td>- Difficult to control temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Differential heating of material</td>
<td>- Require of exclusive-use facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Require of intermediate-material on a joining surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesive Bonding</td>
<td></td>
<td>- Applicable conventional technique</td>
<td>- Require of activation before joining and surface condition management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Applicable on comparatively large-sized parts</td>
<td>- Require of temperature and time for adhesives hardening</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Conclusion

In this study

Ultrasonic welding, microwave welding and adhesive bonding were developed as non-fastening light and low cost joining method for aircraft structures

Ultrasonic welding
- Using a mesh-shaped energy director which can be attach CFRTP easily
- Single lap shear strength reached 44MPa

Microwave welding
- Using metal nano-coil as susceptible filler heated by microwave
- Single lap shear strength reached 43MPa
- Only joint surfaces were heated and welded efficiently

Adhesive bonding
- Pre-treated by atmospheric pressure plasma treatment before adhesive
- Single lap shear strength improved compared with non-pretreated specimen

High joint strength over 25 MPa were obtained for each method
Basic processes were established and technical feasibility was demonstrated
Our Technologies, Your Tomorrow